Komparasi Algoritma Klasifikasi untuk Analisis Sentimen Kinerja Dosen
DOI:
https://doi.org/10.57203/session.v4i01.2025.08-15Keywords:
klasifikasi, Analisa Sentimen, kinerja dosen, support vector machine, random forest, naive bayesAbstract
Dalam era digital, data teks yang berasal dari ulasan, komentar, dan feedback online mahasiswa dapat menjadi sumber informasi berharga untuk memahami persepsi positif dan negatif terhadap kinerja dosen. Penelitian ini bertujuan untuk melakukan komparasi algoritma klasifikasi untuk analisis sentimen opini atau persepsi mahasiswa terhadap kinerja dosen di pendidikan tinggi. Dalam penelitian ini, dilakukan perbandingan tiga algoritma klasifikasi yaitu Naïve Bayes, Support Vector Machine, dan Random Forest. Datasets yang digunakan berupa ulasan mahasiswa terhadap kinerja dosen dari berbagai mata kuliah dan dosen. Datasets terdiri dari 1254 data komentar kritik saran mahasiswa. Data tersebut terdiri dari 839 komentar positif dan 415 komentar negatif. Selanjutnya dilakukan klasifikasi menggunakan algoritma Naïve Bayes, Support Vector Machine, serta Random Forest. Dari hasil klasifikasi diketahui bahwa algoritma Support Vector Machine memberikan hasil yang paling baik kemudian disusul dengan algoritma Random Forest dan yang terakhir algoritma Naïve Bayes. Diketahui Algoritma Support Vector Machine berhasil mendapatkan nilai accuracy sebesar 82,24%, dengan nilai precission sebesar 84,66%, nilai recall sebesar 65,99% dan nilai F1 score sebesar 79,81%.
References
C. R. Glass, K. A. Godwin, and R. M. Helms, “Toward Greater Inclusion and Success,” 2021.
[2] J. E. Chukwuere, “Student Voice in an Extended Curriculum Programme in the Era of Social Media: A systematic Review of Academic Literature,” IJHE, vol. 10, no. 1, p. 147, Oct. 2020, doi: 10.5430/ijhe.v10n1p147.
[3] C. A. Pacol and T. D. Palaoag, “Enhancing Sentiment Analysis of Textual Feedback in the Student-Faculty Evaluation using Machine Learning Techniques,” Eur. j., eng. sci., tech., vol. 4, no. 1, pp. 27–34, Dec. 2021, doi: 10.33422/ejest.v4i1.604.
[4] N. Saraswathi, T. Sasi Rooba, and S. Chakaravarthi, “Improving the accuracy of sentiment analysis using a linguistic rule-based feature selection method in tourism reviews,” Measurement: Sensors, vol. 29, p. 100888, Oct. 2023, doi: 10.1016/j.measen.2023.100888.
[5] S. Nayak, Savita, and Y. K. Sharma, “A modified Bayesian boosting algorithm with weight-guided optimal feature selection for sentiment analysis,” Decision Analytics Journal, vol. 8, p. 100289, Sept. 2023, doi: 10.1016/j.dajour.2023.100289.
[6] Han, Jiawei, Kamber, Michelin, and Pei, Jian, Data Mining: Concepts and Techniques. Elsevier, 2012. doi: 10.1016/C2009-0-61819-5.
[7] W. F. Satrya, R. Aprilliyani, and E. H. Yossy, “Sentiment analysis of Indonesian police chief using multi-level ensemble model,” Procedia Computer Science, vol. 216, pp. 620–629, 2023, doi: 10.1016/j.procs.2022.12.177.
[8] S. Dey, S. Wasif, D. S. Tonmoy, S. Sultana, J. Sarkar, and M. Dey, “A Comparative Study of Support Vector Machine and Naive Bayes Classifier for Sentiment Analysis on Amazon Product Reviews,” in 2020 International Conference on Contemporary Computing and Applications (IC3A), Lucknow, India: IEEE, Feb. 2020, pp. 217–220. doi: 10.1109/IC3A48958.2020.233300.
[9] Pristiyono, M. Ritonga, M. A. A. Ihsan, A. Anjar, and F. H. Rambe, “Sentiment analysis of COVID-19 vaccine in Indonesia using Naïve Bayes Algorithm,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 1088, no. 1, p. 012045, Feb. 2021, doi: 10.1088/1757-899X/1088/1/012045.
[10] V. A. Fitri, R. Andreswari, and M. A. Hasibuan, “Sentiment Analysis of Social Media Twitter with Case of Anti-LGBT Campaign in Indonesia using Naïve Bayes, Decision Tree, and Random Forest Algorithm,” Procedia Computer Science, vol. 161, pp. 765–772, 2019, doi: 10.1016/j.procs.2019.11.181.
[11] Riccosan and K. E. Saputra, “Multilabel multiclass sentiment and emotion dataset from indonesian mobile application review,” Data in Brief, vol. 50, p. 109576, Oct. 2023, doi: 10.1016/j.dib.2023.109576.
[12] D. Ramachandran and R. Parvathi, “Analysis of Twitter Specific Preprocessing Technique for Tweets,” Procedia Computer Science, vol. 165, pp. 245–251, 2019, doi: 10.1016/j.procs.2020.01.083.
[13] D. Rifaldi, Abdul Fadlil, and Herman, “Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet ‘Mental Health,’” Decode, vol. 3, no. 2, pp. 161–171, Apr. 2023, doi: 10.51454/decode.v3i2.131.
[14] E. Rosenberg et al., “Sentiment analysis on Twitter data towards climate action,” Results in Engineering, vol. 19, p. 101287, Sept. 2023, doi: 10.1016/j.rineng.2023.101287.
[15] N. Tri Romadloni and N. Dwi Septiyanti, “Optimasi Feature Selection Pada Komentar Media Sosial Terhadap Peralihan Tv Digital Menggunakan Naïve Bayes, Support Vector Machine dan K-Nearest Neighbor,” Decode, vol. 3, no. 2, pp. 151–160, Apr. 2023, doi: 10.51454/decode.v3i2.121.
[16] D. Sudigyo, A. A. Hidayat, R. Nirwantono, R. Rahutomo, J. P. Trinugroho, and B. Pardamean, “Literature study of stunting supplementation in Indonesian utilizing text mining approach,” Procedia Computer Science, vol. 216, pp. 722–729, 2023, doi: 10.1016/j.procs.2022.12.189.
[17] N. H. Jeremy and D. Suhartono, “Automatic personality prediction from Indonesian user on twitter using word embedding and neural networks,” Procedia Computer Science, vol. 179, pp. 416–422, 2021, doi: 10.1016/j.procs.2021.01.024.
[18] M. Adriani, J. Asian, B. Nazief, S. M. M. Tahaghoghi, and H. E. Williams, “Stemming Indonesian: A confix-stripping approach,” ACM Transactions on Asian Language Information Processing, vol. 6, no. 4, pp. 1–33, Dec. 2007, doi: 10.1145/1316457.1316459.
[19] H. Dwiharyono and S. Suyanto, “Stemming for Better Indonesian Text-to-Phoneme,” Ampersand, vol. 9, p. 100083, 2022, doi: 10.1016/j.amper.2022.100083.
[20] R. L. Atenstaedt, “Word cloud analysis of historical changes in the subject matter of public health practice in the United Kingdom,” Public Health, vol. 197, pp. 39–41, Aug. 2021, doi: 10.1016/j.puhe.2021.06.010.
[21] M. A. Hearst, E. Pedersen, L. Patil, E. Lee, P. Laskowski, and S. Franconeri, “An Evaluation of Semantically Grouped Word Cloud Designs,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS.
[22] Y. W. W. Cui, “Context Preserving Dynamic Word Cloud Visualization”.
[23] Y. Jin, “Development of Word Cloud Generator Software Based on Python,” Procedia Engineering, vol. 174, pp. 788–792, 2017, doi: 10.1016/j.proeng.2017.01.223.
[24] N. B. Putri and A. W. Wijayanto, “Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing,” Komputika, vol. 11, no. 1, pp. 59–66, Jan. 2022, doi: 10.34010/komputika.v11i1.4350.
[25] A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, T. Tukino, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter,” JOINTECS, vol. 8, no. 1, p. 11, Mar. 2023, doi: 10.31328/jointecs.v8i1.4265.
[26] D. Wang and Y. Zhao, “Using News to Predict Investor Sentiment: Based on SVM Model,” Procedia Computer Science, vol. 174, pp. 191–199, 2020, doi: 10.1016/j.procs.2020.06.074.
[27] Y. Al Amrani, M. Lazaar, and K. E. El Kadiri, “Random Forest and Support Vector Machine based Hybrid Approach to Sentiment Analysis,” Procedia Computer Science, vol. 127, pp. 511–520, 2018, doi: 10.1016/j.procs.2018.01.150.
[28] M. Ozcan and S. Peker, “A classification and regression tree algorithm for heart disease modeling and prediction,” Healthcare Analytics, vol. 3, p. 100130, Nov. 2023, doi: 10.1016/j.health.2022.100130.
[29] M. M. Ghiasi and S. Zendehboudi, “Decision tree-based methodology to select a proper approach for wart treatment,” Computers in Biology and Medicine, vol. 108, pp. 400–409, May 2019, doi: 10.1016/j.compbiomed.2019.04.001.
[30] Q. Gu, L. Zhu, and Z. Cai, “Evaluation Measures of the Classification Performance of Imbalanced Data Sets,” in Computational Intelligence and Intelligent Systems, vol. 51, Z. Cai, Z. Li, Z. Kang, and Y. Liu, Eds., in Communications in Computer and Information Science, vol. 51. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 461–471. doi: 10.1007/978-3-642-04962-0_53.
[31] M. Roshani et al., “Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness,” Alexandria Engineering Journal, vol. 60, no. 1, pp. 1955–1966, Feb. 2021, doi: 10.1016/j.aej.2020.11.043.
[32] D. Valero-Carreras, J. Alcaraz, and M. Landete, “Comparing two SVM models through different metrics based on the confusion matrix,” Computers & Operations Research, vol. 152, p. 106131, Apr. 2023, doi: 10.1016/j.cor.2022.106131.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hery Mustofa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright :
Authors who publish their manuscripts in this journal agree to the following conditions.
- The copyright on each article belongs to the author(s).
- The author acknowledges that Jurnal SESSION: Software Development, Digital Business Intelligence, and Computer Engineering has the right to be the first to publish with a Creative Commons Attribution 4.0 International license (Attribution 4.0 International (CC BY 4.0).
- Authors can submit articles separately, arrange for the nonexclusive distribution of manuscripts that have been published in this journal into other versions (e.g., sent to the author's institutional repository, publication into books, etc.), by acknowledging that the manuscript has been published for the first time in the Jurnal SESSION: Software Development, Digital Business Intelligence, and Computer Engineering.
License:
![]()
Jurnal SESSION: Software Development, Digital Business Intelligence, and Computer Engineering is licensed under a Creative Commons Attribution 4.0 International License.
This license permits anyone to copy and redistribute this material in any form or format, compose, modify, and make derivatives of this material for any purpose, including commercial purposes, as long as the author credits the original work.


