DESAIN REAKTOR UNTUK PRODUKSI NANOPARTIKEL ZnO

Authors

  • Annisa Rizky Salsabila Universitas Pendidikan Indonesia
  • Asep Bayu Dani Nandiyanto
  • Risti Ragadhita

Keywords:

Reaktor, Continuous Stirred Tank Reactor, Nanopartikel ZnO

Abstract

Studi tentang desain reaktor menjadi penting karena merupakan salah satu tahapan yang diperlukan dalam suatu desain proses dalam industri. Di samping itu, nanopartikel ZnO juga merupakan salah satu material dengan permintaan yang tinggi untuk diproduksi dalam skala industri karena kegunaannya yang luas. Penelitian ini bertujuan untuk mendesain reaktor yang akan digunakan dalam memproduksi nanopartikel seng oksida (ZnO). Dalam mendesain reaktor ini digunakan perancangan tipe Continuous Stirred Tank Reactor (CSTR), dimana komponen utama reaktor terdiri dari tangki dan pengaduk. Untuk merancang tangki dan pengaduk, perhitungan rancangan dilakukan dengan menggunakan aplikasi Microsoft Excel. Dari hasil perhitungan diperoleh spesifikasi tangki dengan volume 4.30 ft3, tinggi 219.73 in, dan diameter vessel 73.30 in, dengan satu pengaduk berdaya 7.68 Hp. Diharapkan penelitian ini dapat dijadikan acuan dalam merancang reaktor yang lebih efisien, ekonomis, dan handal dalam kegiatan produksi nanopartikel ZnO.

References

A. Jayachandran, A. T.R., and A. S. Nair, “Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract,” Biochem. Biophys. Reports, vol. 26, p. 100995, 2021, doi: 10.1016/j.bbrep.2021.100995.

M. A. Maurer-Jones, I. L. Gunsolus, C. J. Murphy, and C. L. Haynes, “Toxicity of engineered nanoparticles in the environment,” Anal. Chem., vol. 85, no. 6, pp. 3036–3049, 2013, doi: 10.1021/ac303636s.

V. Sharma, R. K. Shukla, N. Saxena, D. Parmar, M. Das, and A. Dhawan, “DNA damaging potential of zinc oxide nanoparticles in human epidermal cells,” Toxicol. Lett., vol. 185, no. 3, pp. 211–218, 2009, doi:10.1016/j.toxlet.2009.01.008.

S. Talam, S. R. Karumuri, and N. Gunnam, “Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles,” ISRN Nanotechnol., vol. 2012, pp. 1–6, 2012, doi: 10.5402/2012/372505.

V. Srivastava, D. Gusain, and Y. C. Sharma, “Synthesis, characterization and application of zinc oxide nanoparticles (n-ZnO),” Ceram. Int., vol. 39, no. 8, pp. 9803–9808, 2013, doi: 10.1016/j.ceramint.2013.04.110.

H. R. Ghorbani, F. P. Mehr, H. Pazoki, and B. M. Rahmani, “Synthesis of ZnO nanoparticles by precipitation method,” Orient. J. Chem., vol. 31, no. 2, pp. 1219–1221, 2015, doi: 10.13005/ojc/310281.

S. V. M. Goorabjavari et al., “Thermodynamic and anticancer properties of inorganic zinc oxide nanoparticles synthesized through co-precipitation method,” J. Mol. Liq., vol. 330, 2021, doi: 10.1016/j.molliq.2021.115602.

B. Bulcha et al., “Synthesis of Zinc Oxide Nanoparticles by Hydrothermal Methods and Spectroscopic Investigation of Ultraviolet Radiation Protective Properties,” J. Nanomater., vol. 2021, 2021, doi: 10.1155/2021/8617290.

A. K. Coker, Industrial and Laboratory Reactors – Chemical Reaction Hazards and Process Integration of Reactors. 2015. doi: 10.1016/b978-0-08-094242-1.00021-8.

G. D. Saratale, R. G. Saratale, J. R. Banu, and J.-S. Chang, Biohydrogen Production From Renewable Biomass Resources. Elsevier B.V., 2019. doi: 10.1016/b978-0-444-64203-5.00010-1.

Z. U. H. Khan et al., “Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications,” J. Photochem. Photobiol. B Biol., vol. 192, pp. 147–157, 2019, doi: 10.1016/j.jphotobiol.2019.01.013.

H. Ma, P. L. Williams, and S. A. Diamond, “Ecotoxicity of manufactured ZnO nanoparticles - A review,” Environ. Pollut., vol. 172, pp. 76–85, 2013, doi: 10.1016/j.envpol.2012.08.011.

A. Kolodziejczak-Radzimska and T. Jesionowski, “Zinc oxide-from synthesis to application: A review,” Materials (Basel)., vol. 7, no. 4, pp. 2833–2881, 2014, doi: 10.3390/ma7042833.

I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer, and A. Kahru, “Ecotoxicity of nanoparticles of CuO and ZnO in natural water,” Environ. Pollut., vol. 158, no. 1, pp. 41–47, 2010, doi: 10.1016/j.envpol.2009.08.017.

L. C. Wehmas et al., “Comparative metal oxide nanoparticle toxicity using embryonic zebrafish,” Toxicol. Reports, vol. 2, pp. 702–715, 2015, doi: 10.1016/j.toxrep.2015.03.015.

S. Gunalan, R. Sivaraj, and V. Rajendran, “Green synthesized ZnO nanoparticles against bacterial and fungal pathogens,” Prog. Nat. Sci. Mater. Int., vol. 22, no. 6, pp. 693–700, 2012, doi: 10.1016/j.pnsc.2012.11.015.

S. Reactor, “Comparative analysis of the efficiency and the methanogens composition in Upflow Anaerobic Sludge Blanket and continuous,” 2012.

P. Kumar, P. Verma, R. Singh, and R. K. Patel, “Proceeding of International Conference on Intelligent Communication, Control and Devices,” pp. 979–989, 2016, doi: 10.1007/978-981-10-1708-7.

F. Isdaryani, “Desain Pengendali pH pada Continous Stirred Tank Reactor (CSTR) menggunakan Kontrol Fuzzy,” Pros. Ind. Res. Work. Natl. Semin., vol. 10, no. 1, pp. 115–120, 2019, [Online]. Available: https://jurnal.polban.ac.id/ojs-3.1.2/proceeding/article/view/1379

A. Azalia, "Rancang bangun alat reaktor pulp (pengaruh temperatur pemasakan terhadap kualitas pulp)" Politeknik Negeri Sriwijaya, Palembang, 2016.

C. Devarajulu and M. Loganathan, “Effect of impeller clearance and liquid level on critical impeller speed in an agitated vessel using different axial and radial impellers,” J. Appl. Fluid Mech., vol. 9, no. 6, pp. 2753–2761, 2016, doi: 10.29252/jafm.09.06.24824.

Y. Chandra Dwiaji, L. Aji Saputra, and F. Setiawan, “PERANCANGAN REAKTOR KAPASITAS 12 m3 UNTUK EPOXY RESIN DENGAN TEKANAN KERJA 3,8 kg/cm2 DAN TEMPERATUR KERJA 150℃,” Tek. STTKD J. Tek. Elektron. Engine, vol. 7, no. 1, pp. 64–78, 2021, doi: 10.56521/teknika.v7i1.301.

C. Rensch et al., “Microfluidics: A groundbreaking technology for PET tracer production?,” Molecules, vol. 18, no. 7, pp. 7930–7956, 2013, doi: 10.3390/molecules18077930.

Downloads

Published

28-02-2023