STUDI PENGARUH TiO2-SiO2 SEBAGAI ACTIVE FLUX TERHADAP PENETRASI PENGELASAN A-TIG PADA MATERIAL ALUMUNIUM SERI 5083-H116

Authors

  • Wisnu Yulianto Nugroho Universitas 17 Agustus 1945 Surabaya

Keywords:

A-TIG, Active Flux, DWR, Penetrasi

Abstract

Pengelasan A-TIG merupakan salah satu metode untuk meningkatkan nilai penetrasi dan DWR pada pengelasan GTAW/TIG, dalam aplikasinya metode ini menggunakan sejumlah flux disebut sebagai active flux. Jenis flux yang digunakan merupakan jenis flux oksida, karena oksida dapat meningkatkan penetrasi dengan cara merubah tegangan permukaan pada weld pool dan meningkatkan densitas arc. Dalam penelitian ini flux yang digunakan adalah TiO2 dan SiO2 yang mana akan dipadukan untuk mencari tingkat paduan efektif dalam meningkatkan penetrasi pengelasan A-TIG material alumunium 5083-H116. Dalam prakteknya active flux ini akan di padukan dengan persentase 100% TiO2, 80%TiO2-20%SiO2, 60%TiO2-40%SiO2, 40%TiO2-60%SiO2, 20%TiO2-80%SiO2, 100% SiO2 kemudian masing-masing paduan akan dilarutkan kedalam 10 ml methanol yang selanjutnya dilakukan proses pengelasan autogenous pada material alumunium 5083-H116. Dari hasil visual setelah pengelasan diperoleh kesimpulan bahwa semakin banyak kandungan SiO2 maka semakin banyak cacat pengelasan yang ada pada weld bead jika di tinjau dari standar AWS D1.2 dan juga semakin banyak spatter yang dihasilkan serta penetrasi yang dihasilkan semakin dalam. Komposisi efektif yang didapat adalah 80% TiO2-20% SiO2 karena memiliki peningkatan penetrasi 220% dan weld bead yang dihasilkan tidak ada cacat.

Kata Kunci: A-TIG, Active Flux, DWR, Penetrasi.

References

Jayakrishnan, S., Chakravarthy, P. and Rijas, A.M., “Effect of Flux Gap and Particle Size on the Depth of Penetration in FBTIG Welding of Aluminium”, The Indian Institute of Metal, 2016.

Tseng, K.H., “Development and Application of Oxide-Based Flux Powder for Tungsten Inert Gas Welding of Austenitic Stainless Steels”, Powder Technology, 2013, No.233, page 72-79.

ASME, ASME Boiler and Pressure Vessel Code Section II Part B, The American Society for Testing and Materials, New York, 2019.

Kaufman Gilbert, J., “Introduction to Aluminum Alloys and Tempers”, first edition, ASM International, Ohio, 2000.

O’Brien, Annette, “Material and Applications Part 2, Volume 5, Ninth Edition”, American Welding Society, Miami, 2015.

Vidyarthy, R.S dan Dwivedi, D.K., “Activating flux tungsten inert gas welding for enhanced weld penetration”, Journal of Manufacturing Processes, 2016, No. 22, page 211-228.

Mitchell, S.B, (2004), An Introduction To Materials Engineering And Science For Chemical And Materials Engineers, a John Wiley & Sons, Inc., 2004, New Jersey.

Lu, S., Fujii, H. and Nogi, K., “Marangoni Convection in Weld Pool in CO2-Ar–Shielded Gas Thermal Arc Welding”, Metallurgical and Materials Transictions A, vol. 35A, 2004, page 2861-2867.

Jayakrishnan, S., Chakravarthy P., “Flux bounded tungsten inert gaswelding for enhanced weld performance”, Journal of Manufacturing Processes, 2017, page 116-130.

Dong, W., Lu, S., Li, D. and Li, Y., “GTAW liquid pool convections and the weld shape variations under helium gas shielding”, International Journal of Heat and Mass Transfer, 2011, No.54, page 1420-1431.

Tseng, H-K. and Hsu, C-Y., “Performance of activated TIG process in austenitic stainless steel welds”, Journal of Materials Processing Technology, 2011, No.211, page 503-512.

Tseng, H-K. and Chen, K-L., “Comparisons Between TiO2- and SiO2-Flux Assisted TIG Welding Processes”, Journal of Nanoscience and Nanotechnology, vol.12, NO.8, 2012, page 6359-6367.

Howse, D.S. and Lucas, W., “Investigation into arc constriction by active fluxes for tungsten inert gas welding”, Science and Technology of Welding and Joining, vol.5, 2015, No.3, page 189-193.

Sivasankaran, S. and Alaboodi, A.S., “Structural characterization and mechanical behavior of Al 6061 nanostructured matrix reinforced with TiO2 anoparticles for automotive applications”, Functionalized Nanomaterials, 2016, page 3-35.

Ramkumar, K.R. and Natarajan, S., “Investigations on microstructure and mechanical properties of TiO2 Nanoparticles addition in Al 3003 alloy joints by gas tungsten arc welding”, Materials Science & Engineering, Vol.A, 2018, No.727, page 51-60.

Fattahi, M., Mohammady, M., Sajjadi,N., Honarmand, M., Fattahi, Y. and Akhavan, S., “Effect of TiC nanoparticles on the microstructure and mechanical properties of gas tungsten arc welded aluminum joints”, Journal of Materials Processing Technology, 2014, page 1-30.

O’Brien, Annette. (2004), Welding Processes Part 1, AWS Welding Handbook Vol. 2, Edition 9, American Welding Society, 2004, Miami

Abdel-Jaber, G.T., Omran, A.M., Khalil, K.A.I., Fuji, M., Seki, M. and Yoshida, A., “An investigation into solidification and mechanical properties behavior of al-si casting alloys”, International journal of mechanical & mechatronics engineering ijmme-ijens, vol.10, 2010, No.04, page 30-35.

Chern, T. S., Tseng, K. H. and Tsai, H. L., “Study of The Characteristics of Duplex Stainless Steel Activated Tungsten Inert Gas Welds. Materials and Design”, Volume 22, 2011, pp. 255-263

Downloads

Published

28-02-2023