STUDI NUMERIK KARAKTERISTIK DISTRIBUSI ALIRAN DAN TEMPERATUR PADA PENDINGIN OLI PELUMAS DENGAN VARIASI MULTI-STEP BLOCKER

Authors

  • Siti Duratun Nasiqiati Rosady Universitas Billfath
  • Eli Novita Sari Universitas Billfath
  • Jauharotul Maknunah Universitas Billfath

DOI:

https://doi.org/10.57203/jinggo.v1i1.2022.21-36

Abstract

Lube oil cooler serves to lower the temperature of the lub eoil in the gas turbine lubrication system. The problem that often occurs is the oil exit temperature is still high. This causes process failure in the lubrication system because the working temperature exceeds the allowable temperature. This failure is caused by non-uniformity flow distribution of the lube oil cooler. Therefore, further studies are needed to improve the uniformity of flow distribution. To increase the uniformity of flow, modification of the shape of the inlet header and variations of the lubricating oil capacity on the performance of the lubricating oil cooler were carried out. The research method used is numerical simulation with ANSYS FLUENT software. The simulation is carried out in 3 dimensions with a turbulence model in the form of k-ε RNG using a pressure based solution solver. Making geometry and design specifications using GAMBIT software. Geometric data is the dimensions of the lubricating oil cooling system and data from previous studies. The simulation is carried out in the form of a base line header with a modification of the inlet header, namely a multi-step blocker with variations of the Reynolds Number of 3088, 5146, and 7616. Based on the results of numerical simulations that have been carried out, the lowest Non-uniformity flow rate is at Re = 3088 sebesar, Ф = 0.01594, Exit Temperature 76.620 oC, and Pressure Drop 639.265 N/m2.

References

Installation and Operation Instructions. CENTAUR Turbine-Driven Generator Set GC1-CB-GE Serial Numbers CG82052, CG82053, and CG82054. Hudbay Oil (Malacca Strait) Ltd.

Wang, Chi-Chuan, et al., “Characterics of Flow Distribution in Compact Parallel Flow Heat Exchangers, Part I: Typical Inlet Header”. Applied Thermal Engineering, Vol. 31, Hal. 3226-3234, 2011.

Hao, Xiaohong., et al, “Numerical Analysis and Optimization on Flow Distribution and Heat Transfer of a U-Type Parallel Channel Heat Sink, School of Mechatronics Engineering, University of Electronic Science and Technology of China. Volume: 7 issue: 2, Januari 2015, https://doi.org/10.1155/2014/672451

Hassan, Jafar M., et al, “CFD Simulation for Manifold with Taperedlongitudinal Section”, International Journal of Emerging Technology and Advanced Engineering, Vol. 4, Issue 2, Februari 2014.

Kays, W.M., London, A.L. Compact Heat Exchanger Second Edition. New York: Mc Grow Hill Book Company, 1964, pp 235-289.

Kim, Nae-Hyun, et al. (2011), “Effect of inlet configuration on the refrigerant distribution in a parallel flow minichannel heat exchanger”. International Journal of Refrigeration, Vol. 34, Hal. 1209-1221, Agustus 2011, https://doi.org/10.1016/j.ijrefrig.2010.05.018.

Byun, H. W., Kim, N. H., “Refrigerant distribution in a parallel flow heat exchanger having vertical header and heated horizontal tubes”. Experimental Thermal and Fluid Science, Vol. 35, Hal. 920-932, september 2011, https://doi.org/10.1016/j.expthermflusci.2011.01.011.

Huang, Cheng-Hung, Wang, Chun-Hsien, “The Design of Uniform Tube Flow Rates for Z-Type Compact Parallel Flow Heat Exchanger”. International Journal of Heat and Mass Transfer, Vol. 57, Hal. 608-622, februari 2013, https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.058.

Yang, Kai-Shing, et al., “Characterics of Flow Distribution in Compact Parallel Flow Heat Exchangers. Part II: Modified Inlet Header”. Applied Thermal Engineering, Vol. 31, Hal. 3235-3242, November 2011, https://doi.org/10.1016/j.applthermaleng.2011.06.003.

Wang, Chun-Hsien, dan Huang, Cheng-Hung, “The Study in the Improvement of System Uniformity Flow Rate for U-Type Compact Heat Exchangers”. International Journal of Heat and Mass Transfer, Vol. 63, Hal. 1-8, Agusutus 2013,

https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.039.

Wibowo, Annis Khoiri dan Dwiyantoro, Bambang Arip., Studi Numerik Peningkatan Cooling Performance pada Lube Oil Cooler Gas Turbine yang Disusun Secara Seri dan Paralel dengan Variasi Kapasitas Aliran Lube Oil, Tugas Akhir, Teknik Mesin, Institut Teknologi Sepuluh Nopember, Surabaya, Oktober 2014.

Boyce, Meherwan P., Gas Turbine Engineering Handbook (Fourth Edition), Elsevier Inc. All rights reserved. 2012, pp 45-54.

Xin, Qianfan, Friction and lubrication in diesel engine system design, Woodhead Publishing Limited. All rights reserved, pp 651-758, 2013. DOI:10.1533/9780857090836.3.651

Cengel, Yunus A., Heat Transfer A Practical Approach Second Edition, John Wiley & Sons Inc, New York.

Moran, Michael J. and Saphiro Howard N, Fundamentals of Engineering Thermodynamics 5th Edition, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2006, pp 342-367.

Wais, Piotr, “Fin-Tube Heat Exchanger Optimization, Heat Exchangers-Basics Design Applications”, Dr. Jovan Mitrovic (Ed.), ISBN: 978-953-51-0278-6, InTech, Maret 2012, DOI: 10.5772/33492.

Ikhwan, Nur., Computational Fluid Dynamic (Mekanika Fluida Komputasi): Konsep Fundamental, Teknik Mesin, Institut Teknologi Sepuluh Nopember, Surabaya, 2000, pp 34-52.

Setyanto, Daud Gani dan Djanali, Vivien Suphandani. Komparasi Model Turbulensi pada Heat Recovery Steam Generator, Tugas Akhir, Teknik Mesin, Institut Teknologi Sepuluh Nopember, Surabaya, September 2014.

Goren, Omer et al., “Effect of Turbulence Modelling on The Computation of The Near-Wake Flow Of A Circular Cylinder”, Ocean engineering, Vol. 37, Hal. 387-399, Maret 2010, https://doi.org/10.1016/j.oceaneng.2009.12.007.

Tuakia, Firman., Dasar-dasar Menggunakan CFD: Computational Fluid Dynamics Menggunakan FLUENT, Informatika, Bandung, 2008, pp 67-76.

ANSYS FLUENT, FLUENT 6.3 User’s Guide, Macrovision Corporation, 2006, pp 34-65.

Incropera, Frank P., et al., Fundamentals of Heat and Mass Transfer Seventh Edition, John Wiley & Sons Inc, New York, 2007, pp 234-253.

Pritchard, Philip J., Fox and Mc Donald’s Introduction to Fluid Mechanics Eighth Edition, New York: John Wiley & Sons Inc, 2010, pp 45-65.

Rathod, M. K., et al, “Performance evaluation of flat finned tube fin heat exchanger with different fin surfaces”, Applied Thermal Engineering, Vol. 27, Hal. 2131–2137, Agustus 2010, https://doi.org/10.1016/j.applthermaleng.2006.10.030.

Downloads

Published

31-08-2022

How to Cite

[1]
S. Duratun Nasiqiati Rosady, E. Novita Sari, and J. Maknunah, “STUDI NUMERIK KARAKTERISTIK DISTRIBUSI ALIRAN DAN TEMPERATUR PADA PENDINGIN OLI PELUMAS DENGAN VARIASI MULTI-STEP BLOCKER”, JINGGO, vol. 1, no. 1, pp. 21–36, Aug. 2022, doi: 10.57203/jinggo.v1i1.2022.21-36.